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Abstract 

A set of symbols based on the minimum subset of Seitz 
matrices required to generate the complete symmetry 
may be derived for each of the three-dimensional 
crystallographic space groups. This has a number of 
desirable properties including explicit information on 
the choice of origin. It also leads to a simple and general 
algorithmic procedure for generating equivalent 
positions. 

Introduction 

Two main systems of crystallographic space group 
names are in use today. Sch6nflies notation originated 
with the early derivation of space groups (Sch6nflies, 
1891) and International notation came into general use 
with the 'old' International Tables for X-ray 
Crystallography (Bragg, von Laue & Hermann, 1935). 
Both the International and Sch6nflies notations appear 
in the current issue of International Tables for X-ray 
Crystallography, Vol. I (Henry & Lonsdale, 1972). 

International space-group notation is commonly 
used in crystallography because it contains explicit 
information about the nature and the orientation of the 
symmetry elements in any particular space group. This 
notation invokes a sequence of alphanumeric charac- 
ters which specify the Bravais-lattice type, the con- 
stituent symmetry elements and the orientation of 
elements with respect to the cell axes. International 
Tables for X-ray Crystallography, Vol. I, lists these 
symbols in a 'full' and 'short' format. The full symbol 
contains complete information on the nature and 
orientation of the symmetry elements, while the short 
symbol contains the minimum subset of this infor- 
mation necessary to describe uniquely the essential 
point group and diffraction symmetry of the space 
group. 

The diffraction symmetry information appears in the 
International short symbol as those translational 
elements which give rise to systematic absences (see p. 
549, International Tables for X-ray Crystallography, 
Vol. I). Translational information which relates the 
symmetry operators to a cell origin is not included. This 
omission is not surprising since the choice of origin is 
irrelevant in diffraction space, and it is from this 
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direction that crystallographers have traditionally deter- 
mined space-group symmetry. 

It should be emphasized that from a group 
theoretical point of view the complete translational 
symmetry of each space group is implicit in the 
symmetry elements of the International symbol. How- 
ever, the absence of explicit translational information in 
the space-group name places practical limitations on its 
use as a concise space-group descriptor. In the first 
place, most space groups have more than one possible 
origin. But origin specification is often desirable for 
easy comparison of symmetrically equivalent sites. 
International Tables for X-ray Crystallography, Vol. I, 
satisfies this requirement by listing the equivalent 
positions of each space group for a specific origin 
choice. Unfortunately, the selection of origins for the 
space groups as given in International Tables for X-ray 
Crystallography appears to have been arbitrary. This 
makes a consistent approach to generation of equiva- 
lent positions using the International notation unduly 
complicated. 

The use of the International notation has several 
other disadvantages as a space-group descriptor. The 
implied directions of the pure and impure rotational 
elements vary according to the crystal system (see 
Table 3.3.2, International Tables for X-ray Crystal- 
lography, Vol. I). This further complicates the trans- 
cription of the International notation into the symmetry 
elements. Similarly the use of redundant symmetry in- 
formation in the space-group names of certain crystal 
classes, but not of others, precludes a consistent 
procedure using these names to generate a complete set 
of symmetry elements for each of the space groups. 

The space-group names described in this paper have 
the following properties: 

(a) they contain explicit translational information 
which completely specifies the space-group origin; 

(b) they contain no redundant symmetry information 
(i.e. they invoke a minimum subset of symmetry 
operators required to generate all elements); 

(c) they explicitly distinguish centrosymmetric from 
noncentrosymmetric space groups; 

(d) they provide direct information about the number 
of symmetry elements in the space group; and 

(e) a very simple set of rules defines the implicit 
directions of rotational elements. 
© 1981 International Union of Crystallography 
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Seitz matrix formalism 

Each space group is composed of a unique set of 
symmetry operators in three-dimensional space. These 
operators are conveniently represented by 4 x 4 Seitz 
matrices (Seitz, 1936; Bradley & Cracknell, 1972)of  
the form 

r n  r12 r 1 3 ! t t  

S :  r21 r22 r23 ! t2 
I 

r31 r32 r33 i t3 
. . . . . . . . . . . . . . . .  t .  . . . .  

0 0 O i  1 

[ itl 
L 

(1) 

(2) 

= {R/t}, (3) 

where R is the 3 × 3 matrix defining the rotation 
operation and t is the vector defining the translation 
operation. The allowed values for r n, r12 . . . .  , rla are 0, 
+ 1 or --1, and the elements t~, t2, t 3 are the fractions of 
the crystal unit cell 0, ~, ¼, ~, ½, 2 ~. 7 , ~ , o r  That is, f o r a  
space group composed of n symmetry operators the 
binary product S i Sj = S k must satisfy the condition 
that 1 < {i,j,k} _< n. It follows that there can exist 
subsets of Seitz matrices which also define uniquely the 
symmetry of a space group, and that enable the full set 
of symmetry operators to be generated simply by a 
process of binary multiplication. The minimum subset 
of Seitz matrices required to define a space group 
uniquely is the basis of the notation proposed in this 
paper and will be referred to henceforth as the set of 
generator matrices. 

In International Tables for X-ray Crystallography, 
Vol. I, the complete set of symmetry operators for each 
space group is given as general equivalent positions 
expressed in the Jones Faithful representation x 
(=x,y,z; etc.). The relationship between these two 
representations is simply 

X ----- r t l  X + r t2  y + r13 Z + t l ,  (4) 

y = r21 x + r22 y + r23 z + t2, (5) 

Z ---- r31 X + r32 y + r33 Z + t3, (6) 

where x,y,z are coordinates in fractions of unit-ceU axes 
along the principal cell directions. Equations (4)-(6) 
may be more concisely expressed for the ith symmetry 
operation as 

x i = R i x + t i (7) 

or simply 

(x, 1) i = St(x, 1). (8) 

The convenience of the Seitz matrix formalism can 
be illustrated by considering the relationship between 
symmetry operations in real and reciprocal space. Each 

space group defines a set of symmetry operations in 
reciprocal space, referred to as equivalent reflections h 
(= h,k,l; etc.). The ith equivalent reflection h i and 
corresponding phase shift A t (in cycles 1.0 = 2~z) may 
be expressed in Seitz notation as 

(h, A)i = (h, 0) S i. 

This is equivalent to the equations 

h = r n h + r21k + ra~/, 

k = r~2 h + r22 k + ra2/, 

l =  rxa h + r2ak + r33/, 

and 

(9) 

(10) 

(11) 

(12) 

A = t 1/7 + t 2 k + t 3/. (13) 

Computer application of Seitz matrices 

Every form of space-group symmetry is defined 
uniquely by the associated Seitz matrices. Information 
such as special positions in real space, site reflection 
multiplicities, systematic absences, intensity reinforce- 
ment factors, and structure seminvariant relationships 
may be obtained directly from these matrices. Compu- 
tationally it is of significant practical value to use these 
matrices as the sole source of space-group information. 
Thus a space group need be specified only once, after 
which all subsequent symmetry considerations can be 
handled automatically. The advantages of this approach 
in the use of space-group symmetry include user 
convenience, minimization of input errors and reduced 
computer storage requirements. 

In many cases of existing crystallographic computer 
software this approach to space-group definition has 
been adopted. Some computer programs require as 
input the complete set of n symmetry operators as 
either equivalent positions x i (Stewart, 1976; Main, 
Woolfson & Germain, 1971) or as R i matrices and ti 
vectors (Ahmed, Hall, Pippy & Huber, 1966). For 
higher-symmetry space groups this is a tedious and 
error-prone task. The use of equivalent positions is also 
dependent upon whether the crystal settings used are 
those listed in International Tables for X-ray 
Crystallography, Vol. I. 

Clearly it would be more desirable to specify the 
space-group symmetry in terms of a unique but simple 
name. This has been attempted in some programs 
which depend upon the short form of the International 
space-group name (Larson, 1969; Burzlaff, B6hme & 
Jomm, 1977). However, because of the difficulties of 
origin definition and the order and choice of symbols 
referred to above, a large and relatively complex 
program segment is needed to generate from these 
names the complete set of equivalent positions given in 
International Tables for X-ray Crystallography, Vol. I. 
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Proposed space-group notation 

The notation proposed in this paper results from an 
attempt to combine the computational advantages of an 
abbreviated name with the precise definition of a space 
group provided by its Seitz matrices. It is thus in 
essence a symbolic representation of the minimum set 
of Seitz matrices required to generate all the symmetry 
elements of each space group. 

The proposed space-group notation has the general 
format: 

L[N~I, [N¢IE [N¢]3. 
L is the lattice symbol which specifies the pure 
translational symmetry associated with the elementary 
rotation matrix E and the inversion matrix - E .  These 
are described in detail in Table 1. 

Nr a is a combined symbol which describes the Seitz 
matrix to be used as a generator. T is the symbol 
denoting the translation vector t (see Table 2) and N A is 
the symbol specifying the rotation matrix R with 
respect to an axis 'A' (see Tables 3, 4 and 5). The 
general form of Nr  A is such that N is either a positive 
integer (1, 2, 3, 4 or 6) designating the o rde ro f  aproper 
rotation, or a negative integer (1, 2, 3, 4 or 6) 
designating the order of an improper rotation. The axis 

Table 1. Lattice symbol L 

The lattice symbol L of the space-group name specifies one or more 
generator matrices. Symbols with an overbar specify a centro- 
symmetric space group and two matrices related by an inversion 
centre. The number of generator matrices implied by each symbol is 
given as nS. 

Noncentrosymmetric Centrosymmetric 
symbol nS~f symbol nS$ 

P 1 t5 2 
A 2 ,,] 4 
B 2 /) 4 
C 2 6' 4 
I 2 1" 4 
R 3 k 6 
F 4 -~ 8 

symbols are limited to x, y, z, ", ' and * to denote 
symmetry operations in the a, b, c, a + b O ,  a -  b O  
and a + b + e O directions, respectively. 

The subscript symbol T is blank when t = (0,0,0) or 
some combination of alphanumeric symbols when 
specifying a fractional translation vector. For example, 
the subscript 'ad' specifies the translation vector t = 
(½,0,0) + (¼,¼,1) = (l,¼,t). The subscript '2 '  of the 
combined symbol 3~ refers to translation vector (0,0,]). 

Table 2. Translation symbol T 

The subscript symbol T specifies the translation component of each 
generator matrix. Alphabetic symbols specify fractional translations 
along a fixed direction. Numeric symbols specify translations as a 
fraction of the rotation order N and in the direction of the implied or 
explicitly defined axis. 

Subscript Translation Subscript Translation 
symbol vector t symbol vector t 

a ½,0,0 1 in 3, ½ 
b 0,½,0 2 in 3 2 .~ 
c 0,0,½ 1 in 4, 

1 ' ' 3 in 4 3 n ~,~,~ 
u ¼,0,0 1 in 6, 
v 0,~,0 2 in 6 2 
w 0,0,¼ 4 in 6 4 
d ' ' ' 5 in 6 5 ;b;~,g 

Table 3. Rotation symbol N A forprincipal axes 

The symbol N A specifies the order of rotation (N) and the axial 
direction of rotation superscript A. This table lists N for the three 
principal unit-cell directions. Improper rotations are specified by an 
overbar. R (h) = - R  (n). 

Rotation 
Symbol axis 

Implied lattice 
translation t 

0,0,0 N x a 
0,0,0 0,½,½ 
0,0,0 , 1 ~,0,~ 
0,0,0 I I  ~,~,0 
0,0,0 ' "  ~'~'~ N y b 
0,0,0 122 211 ~,~,~ "~,~',~ 
0,0,0 0,½,1 1 I I I  ~,0,~ ~,~,0 

"1" Implies R = E. 

~ImpliesR=Eand--E, w h e r e E - ( l l  1 ) a n d - E = ( i  i ~)" 
N z e 

Rotation component R 
N = 2  N = 3  N = 4  N = 6  

( i  0i)0i ( i  0 i ) 0 1  ( i  0 ! ) 0 1  ( i 0  i ) l l  

(oo o °i)(o o i)(i °o it ti°:) o 
(Z i)o° (i !)oO 

Table 4. Rotation symbol N a for  face-diagonal axes 

The symbols for face-diagonal twofold rotations are 2' and 2". The face-diagonal rotation matrices R are implied by the preceding rotor 
symbol which defines the unique axis. 

Category Preceded by N x Preceded by N y Preceded by N ~ 

Symbol 2' 2" 2' 2" 2' 2" 
Rotation axis b -  e b + c a -  e a + e a -  b a + b 

(i°Z)(i°i) (i°!)(i°it (!i)(!1o) Rotation matrix R 0 0 [ [ 0 0 0 

i i o o o o i  
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Table 5. Rotation symbol N A for body-diagonal axes 

The symbol for the body-diagonal threefold rotation is 3*. This 
defines the matrix for the a + b + e direction. 

Symbol Rotation axis 

3* a+ b+ e 

Rotation matrix 
R (Z 01) 
0 0  
l O  

Some typical examples of Seitz matrices specified by 
Nr A symbols are: 

:il -~x= 1 0 
~C 

0 1 

0 0 

°li ° °il 
o o l 

4~w - . 
0 1 

0 0 

3 * =  
OtOlo o o t 

1 0 ' 

0 0 

Implied order for symmetry axes 

The explicit form of the matrix symbols Nr A means that 
space-group definition is essentially independent of the 
order they appear in the names. t  It is desirable, 
however, to standardize the order of the matrix symbols 
for a number of practical reasons. It aids in the 
recognition of a space-group name and most importan- 
tly it facilitates an overall simplification of the notation. 
A simple set of rules for ordering the N# symbols can 
enable most axis designations to be implied rather than 
declared explicitly with the symbol A. 

The proposed space-group names listed in Table 6 
use the following rules to define implicitly the direction 
of symmetry operations. 

When the axis symbol A & omitted 

thefirst symbol N r refers to the axis direction e; 
the subsequent N r symbols refer to the axis direction 

a if N = 2 preceded by N = 2 or 4, 
a - b if N -  2 preceded by N = 3 or 6, 

and a + b + e i f N =  3. 
In addition to their simplicity, these rules have several 
important advantages over those governing the Inter- 
national notation. Firstly, they are self-defining and 
independent of the crystal system; secondly, the unique 
axis for all space groups is implied to be along e; and 

t The exception being the face-diagonal symbols which must be 
preceded by a symbol defining a unique axis. 

thirdly, there is no need for redundant symbols to 
satisfy an implied axis order• 

There is one further important difference. The 
proposed notation distinguishes quite clearly between 
the two alternative axial systems possible for some 
trigonal space groups. The primitive definition is used 
for the rhombohedral axes, while the R-centred cell is 
identified explicitly for hexagonal axes. The use of two 
names for a single space group is consistent both with 
the change in symmetry operators expected with a 
change in axial assignment, and with the self-defining 
nature of the proposed notation. 

Generation of  equivalent positions 

Step 1 : Decode space-group symbols 

The generation of a complete set of equivalent 
positions for a given space group is a relatively 
straightforward procedure. The first step is to decode 
the space-group symbols into the 'generator' matrices. 
This process is illustrated with a number of examples• 
In each example the number of generator matrice m is 
simply the sum of the Seitz matrices contributed by 
each component of the space group name. For instance, 
in example (ii) the lattice symbol i contributes four 
Seitz matrices, two from the I centre and two from the 
inversion i. Similarly, the number of equivalent 
positions n for any space group comes directly from the 
product of the symmetry operations implied from each 
component of the space-group name. Again, in example 
(ii) the fourfold operator contributes four equivalent 
positions, while 2 c contributes two. 

(i) P2ac 2 (No. 31, Pmn21) decodes into m = 3 Seitz 
matrices which generate n = 1 . 2 . 2 = 4  equivalent 
positions. (1) 

P: Sl 1 
= 1 ; 

1 

2,c: $2 ~) = 1 ; :2:$3 = 1 • 

1 

(ii) I42 c (No. 140, 14/mcm) decodes into m = 6~: 
Seitz matrices which generate n = 4 . 4 . 2  = 32 equiva- 
lent positions. 

In practice it is not necessary to add to the generator list those 
matrices due either to a centred cell or to an inversion centre. It is 
usually more convenient to exclude all matrices related by a centre 
or an inversion from the symmetry elements and flag these 
properties of the space group separately. Each full set of generator 
matrices is shown in these examples to illustrate the complete 
expansion of the lattice symbol. 
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] : S I  = 1 1 

1 ' $ 2 =  1 ' 

1 

f i ½ 
S 3 =  [ , S 4 =  i ½ ; 

1 1 

4. S 5 = 0 1 ; 2c:  $ 6  = [ " 

1 

(1) ( ) 
/ 5 : $ 1  = 1 i 

1 ' S 2 =  i ; 

1 1 

4: S 3 = 1 i 
1 ; 2 :  S 4 = i ; 

1 1 (1) 
1 

3: S 5 = 1 • 

1 

(iii) R32 c' (No. 161, R3c) decodes into m = 51" Seitz 
matrices which generate n = 3 . 3 . 2  = 18 equivalent 
positions. (1) (1 ,) 

1 1 
R: Sl = 1 ' $2 = 1 ~ ' 

1 1 

1 -] . 
$ 3 =  1 -] ' 

1 

-it. i 01 
2c " $5 = i 

3"$4 1 i 
= 1 

1 

(iv) P3"2" (No. 161, R3c) decodes into m = 3 Seitz 
matrices which generate n = 1 . 3 . 2 =  6 equivalent 
positions. (1) 

p: $1 1 . 
= 1 ' 

1 

3*: S 2 

(1) 
1 1 ½ 

1 ; 2":  S a  = 1 ½ ' 

1 1 

(v) /5423 (No. 221, Pm3m) decodes into m = 5"t" 
Seitz matrices which generate n = 2 . 4 . 2 . 3  = 4 8  
equivalent positions. 

~" See footnote I: on p. 520. 

Step 2: Generate symmetry operators 

The second stage of the generation process is to 
multiply together the m matrices in the generator list to 
obtain new matrices. Each matrix so formed is added to 
the list, and used in turn to form further binary 
products. This process, applied exhaustively, results in 
the generation of a set of matrices representing all 
possible symmetry operations in a space group. Since 
the number of unique symmetry operations n is 
specified explicitly by the notation (see the above 
examples) the generation process may be curtailed as 
soon as the list count m reaches n. 

An algorithmic procedure for matrix generation is 
given below. R is the 3 x 3 partition of the 4 x 4 S 
matrix and the m and n are counts that do not include 
matrices related by a centre or an inversion. 

do i = 2 to m outer generator  loop 
/ d o j  = 2 to m inner generator  loop 

{ S(m + 1) = S(i),  S(j)  form new Seitz matrix 
for k = 1 to m + 1 inner search loop 
l i f R ( m  + 1) = +R(k) test for unique rotation 
or R(m + 1) = -R(k)  exit loop matrix exit if not 

}m = max (m, k) extend list if unique 
} if m = n exit loop exit when list complete 

I end of  generation process 

The procedure assumes, of course, that the list of 
matrices supplied by the 'decode' step are sensible and 
correct. In practice, it is necessary to have additional 
steps in this procedure as a protection against user 
error. Usually these would test both the space-group 
symbols and the generated matrices for logical 
integrity. 

In addition it is desirable to output the general 
equivalent positions in the Jones Faithful representation 
(i.e. x,y,z; etc.), and the systematic absence con- 
ditions for hkl diffraction data. Although not essential 
these provisions provide in both real and reciprocal 
space the symmetry data in more familiar form. In both 
cases this information may be derived directly from the 
Seitz matrices. 
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Table 6. Proposed space-group names 

IT = International Tables for  X-ray Crystallography 

International Proposed International Proposed 
IT No. notation notation IT No. notation notation 

International Proposed International Proposed 
IT No. notation notation IT No. notation notation 

1 PI PI 
2 P| /51 

3 P2 P2 
4 P21 P2 c 
5 B2 B2 
6 Pm P;2 
7 Pb P;2~ 
8 Bm B2 
9 Bb B2~ 

10 P2/m /52 
11 P2Jm #2 c 
12 B2/m B2 
13 P2/b /52~ 
14 P21/b /52~c 
15 B2/b B2o 

16 P222 P22 
17 P2221 P2c2 
18 P21212 P22~0 
19 P21212 ~ P2ac2ao 
20 C2221 C2c2 
21 C222 C22 
22 F222 F22 
23 I222 122 
24 1212121 I2ac2a~ 
25 Pmm2 P22 
26 Pmc2 t P2e2 
27 Pcc2 P22~ 
28 Pma2 P22 a 
29 Pca2, P2c2ac 
30 Pnc2 P22bc 
31 Pmn21 P2ac2 
32 Pba2 P22~ 
33 Pna21 P2~2. 
34 Pnn2 P22. 
35 Cmrn2 C22 
36 Cmc2 t C2cfi 
37 Ccc2 C22c 
38 Amm2 A22 
39 Abm2 A2}~ 
40 Ama2 A 22 a 
41 Aba2 A22~ 
42 Fmm2 F22 
43 Fdd2 F22 a 
44 Imm2 I22 
45 Iba2 I22~ 
46 Ima2 I22~ 
47 Pmmm £r22 
48 Pnnn P2a~2~c 
49 Pccm P22~ 
50 Pban /52a~2~ 
51 Pmma /b2o2a 
52 Pnna P2a2~c 
53 Pmna F2a~2 
54 Pcca P2a2ac 
55 Pbam P22~ 
56 Pccn P2ao2~ 
57 Pbcm /52~2~ 

58 Pnnm /522. 
59 Pmmn P2~b2 ~ 
60 Pbcn /52.2~o 
61 Pbca /52ac2ab 
62 Pnma /52ac2 ~ 
63 Cmcm C72c2 
64 Cmca t~2~c2 
65 Cmmm C722 
66 Cccm t~22~ 
67 Cmma C72a2 
68 Ccca C2o2ac 
69 Fmmm F22 
70 Fddd F2~v2~w 
71 lmmm -122 
72 lbam 122 c 
73 Ibca I2~2~ 
74 Imma -1262 

75 P4 P4 
76 P41 P4~ 
77 P4~ P4 c 
78 P43 P4 s 
79 14 14 
80 141 14.tb 
81 P4 P'~ 
82 14 Iz~ 
83 P4/m /54 
84 P4Jm /54 c 
85 P4/n P4. 
86 P4~/n /54~o 
87 14/m -14 
88 I4,/a -14aa 
89 P422 P42 
90 P 4 2 1 2  P4a~2a~ 
91 P4122 P4t2 c 
92 P41212 P4s~2.~ 
93 P4z22 P4c2 
94 P42212 P4n2. 
95 P4322 P432 c 
96 P4s212  P41n2ao~ 
97 I422 142 
98 14,22 I4~2~ 
99 P4mm P4 2 

100 P4bm P42a ~ 
101 P42cm P4c2 ~ 
102 P4~nm P4¢2 n 
103 P4cc P42 c 
104 P4nc P42~ 
105 P42mc P4c2 
106 P42bc P4e2a~ 
107 14mm I42 
108 14cm I42~ 
109 I41md I41~9- 
110 I41cd 14,~2~ 
111 P542m p2,2 
112 P42c P542 c 
113 P42~m P42~ 
114 P421c P42~ 
115 P4m2 P42 

I 16 P4c2 P42c 
I 17 P4b2 P42~ 
I 18 P~ln2 P42_n 
119 I54m2 142 
120 I4c2 I42~ 
121 1/42m I~,2 
122 142d 142~w 
123 P4/mmm P42 
124 P4/mcc P42 c 
125 P4/nbm P4a2o 
126 P4/nnc P4a2bc 
127 P4/mbm P42~b 
128 P4/mnc P42. 
129 P4/nmm P4~2~ 
130 P4/ncc P4a2ac 
131 P42/mmc P4c2 
132 P4Jmcm P4c2~ 
133 P42/nbc P4ac2 ~ 
134 P42/nnm P4ac2~ 
135 P4Jmbc P4c2ao 
136 P4~/mnm P4n2. 
137 P4~/nmc P4~2~ 
138 P42/ncm P4ac2ae 
139 I4/mmm -142 
140 I4/mcm 142 c 
141 14~/amd -14~a2 
142 I41/acd I4~a2 c 

173 P63 P6 c 
174 P6 P6 
175 P6/m /56 
176 P6s/m /56° 
177 P622 P62 
178 P6122 P612 
179 P6522 P652 
180 P6222 P622 
181 P6422 P642 
182 P6322 P6c2 
183 P6mm P62 
184 P6cc P62 c 
185 P63cm P6c2 
186 P6smc P6~2~ 
187 P6m2 P62 
188 P6c2 P6~2 
189 P62m P62 
190 P62 c P6c2c 
191 P6/mmm /562 
192 P6/mcc /562~ 
193 P6s/mcm /56~2 
194 P63/mmc /56c2 c 

195 P23 P223 
196 F23 F223 
197 123 I223 
198 P213  P2~2,~3 
199 1213 I2ac2~b3 

143 P3 P3 200 Pm3 /5223 
144 P31 P31 201 Pn3 /52ob2bo3 
145 P32 P32 202 Fro3 F223 
146 R3 R3 P3* 203 Fd3 ~'2u.2w3 
147 P3 /53 204 lm3 I223 
148 R3 R3 /53* 205 Pa3 /52~c2~b3 
149 P312 P32 206 Ia3 12ac2ab3 
150 P321 P32" 207 P432 P423 
151 P3112 P312 208 P4232 P4n23 
152 P3121 P312" 209 F432 F423 
153 P3212 P322 210 F4132 F4a23 
154 P3221 P322" 211 I432 1423 
155 R32 R32" P3'2 212 P 4 3 3 2  P4ban2ob3 
156 P3ml P32" 213 P 4 1 3 2  P4ba2ab3 
157 P31m P32 214 1 4 1 3 2  14~a2ab3 
158 P3cl P32c" 215 P43m P423 
159 P3 Ic P32 c 216 F43m F2.23 
160 R3m R32" P3"2 217 I43m 1423 
161 R3c R3"5' c' P3"2. 218 P43n P4.23 
162 P31m t532 219 F43e F4~23 
163 P31 c /532c 220 I43d 14ba2ab3 
164 P3ml /532" 221 Pm3m /5423 
165 P3cl P32~' 222 P n 3 n  P4a2/~3 
166 R3m R32"/53*2 223 Pm3n /54.23 
167 R3c k32'~' P3"2. 224 Pn3m P-4bc2~3 

225 Fm3m F423 
168 P6 P6 226 Fm3c F4.23 
169 P61 P6, 227 Fd3m ~'4vw2vw3 
170 P65 P65 228 Fd3c F4ua2v..3 
171 P6 z P62 229 Im3m -1423 
172 P64 P64 230 la3d I4ba2ab3 
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Comparison of generated equivalent positions with 
those in International Tables for X-ray 

Crystallography 

The generation procedure outlined above will, except 
for some centred-space-group names, provide equiva- 
lent positions identical to those in International Tables 
for X-ray Crystallography, Vol. I. The exceptions arise 
when the non-centred subgroup of equivalent positions 
listed in International Tables for X-ray Crystal- 
lography is inconsistent with a sequential generation 
process. Differences occur only if matrices related by a 
centre or an inversion are not generated but implied. If 
all matrices are generated, they are identical to the 
complete set of equivalent positions implied in Inter- 
national Tables for X-ray Crystallography, Vol. I. It 
follows that the generated subgroup of symmetry 
elements is identically equivalent for the majority of 
symmetry requirements. 

Different origin choice and order to International 
Tables for X-ray Crystallography 

Any proposal for new space-group notation would be 
incomplete without some a priori consideration of how 
the space-group names might be tabulated; that is, if the 
particular origin choice and space-group order adopted 
in International Tables for X-ray Crystallography, Vol. 
I, was ignored. 

Table 7 shows the result of an approach to 
space-group arrangement based on similarity of sym- 
metry operators and the number of symmetry elements. 
The ordering is simple and consistent with recognized 
operator subgroups. The subgroups of space groups are 
arranged in approximate order of increasing symmetry. 

Conclusion 

Nonconventional space-group settings 

Constructing new space-group names for noncon- 
ventional settings is a relatively straightforward task. 
Rotations can be assigned to any direction with the axis 
symbol A. As discussed above, a matrix generation 
process will normally check the symbolic name and 
equivalent positions for logical integrity. In addition, the 
systematic absences derived from this process can be 
validated against the measured diffraction data. In 
general, the proposed notation is no more difficult to 
use with nonconventional settings than is the existing 
International notation, even when the tables of Inter- 
national notation to translate nonconventional settings 
for space groups in the monoclinic and orthorhombic 
systems (International Tables for X-ray Crystal- 
lography, Vol. I, Tables 6.2.1) are taken into account. 

To illustrate the use of a nonconventional space- 
group setting, consider space group No. 41 in Inter- 
national Tables for X-ray Crystallography, Vol. I, pp. 
547 and 549. 

Notation 

Axes International Proposed 

abc Aba2  A22ob 

cab B2cb B2X 2~c 

abb Ac2a A 2 y 2~c 

Reflection conditions 

hkl  k + l = 2n 
Okl k = 2n; ( l =  2n) 
hOl h = 2n; ( I =  2n) 
hkO (k = 2n) 

hkl  h + l =  2n 
Ok! (l = 2n) 
hOl (h = 2n); / =  2n 
hk0 (h = 2n); k = 2n 

hkl k + l = 2n 
Okl (k = 2n); l =  2n 
hOl ( l =  2n) 
hkO h = 2n; ( k = 2 n )  

The proposed space-group notation gives a precise 
description of space-group symmetry. The explicit 
definition of the space-group inversion centre and the 
clear separation of rotation, translation and axis- 
direction symbols provides direct and easily inter- 
pretable information about the symmetry of any group. 
The construction and format of the notation make it 
particularly suited to computer generation of symmetry 
information. Because it is a concise representation of 
symmetry in real space it should also be attractive to 
disciplines other than crystallography. Certainly the 
existing International notation is limited for many 
workers in non-crystallographic fields because the name 
itself cannot be readily interpreted in either real or 
reciprocal space. This deficiency could be one of the 
reasons why International notation has not gained 
wider acceptance in other scientific disciplines. 

There is an ever-increasing use of computers in the 
collection and processing of scientific data. Tabulated 
information currently extracted from books will in the 
future be generated by computer in much the same way 
as sine, cosine and exponential values are today. 
Space-group information, which has traditionally been 
extracted from International Tables for X-ray 
Crystallography, Vol. I, will increasingly be computer- 
generated. The need for a simple and efficient procedure 
for performing this task is of prime importance. 

The author wishes to thank Drs E. N. Maslen, K. J. 
Watson and A. H. White of the Crystallography Centre 
for discussion of the proposed notation and for their 
suggestions to the text of this paper. Thanks are also 
due to a number of workers whose interests in the 
computer generation of symmetry information and 
encouragement finally led to the preparation of this 
paper. 
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Proposed IT 
order notation order 

1 P1 1 
2 /51 2 

3 P2 3 
4 P2 6 
5 P2 c 4 
6 P_2o 7 
7 P2 10 
8 _/_/_/~ c 11 
9 P2 b 13 

10 /52~c 14 
11 B2 5 
12 B:2 8 
13 B2o 9 
14 B2 12 
15 B2~ 15 

16 P22 16 
17 P22~ 18 
18 P22 25 
19 P22_a 28 
20 P22~ 27 
21 P22_~ 32 
22 P22b~ 30 
23 P22. 34 
24 P2,.2 17 
25 P2~_. 19 
26 P2~_ 26 
27 P2~_~ 31 
28 P2c2ac 29 
29 _P2c2. 33 
30 P22 47 
31 _P22 c 49 
32 P22~ 55 
33 P22. 58 
34 ~2a2 a 51 
35 _P2~2. 60 
36 P2~2~ 57 
37 /52~2~ 52 
38 ~2~c2 53 
39 _P2~2~ 54 
40 P_2~2a~ 61 
41 P2~2. 62 
42 P2a~2 a 59 
43 P_2ao2 ~ 50 
44 Paa2ac 56 
45 /52ab2t~ 48 
46 C22 21 
47 C22 35 
48 C22 e 37 
49 C2~_ 20 
50 C2 A 36 
51 C2r2 38 
52 C2~2_-. 39 
53 C2~2c 40 
54 C_2Y2ae 41 
55 C22 65 
56 ~22~ 66 
57 C2~2 63 

Table 7. Proposed ordering of space groups 

IT = International Tables for X-ray Crystallography. 

Proposed IT Proposed IT 
order notation order order notation order 

Proposed IT 
order notation order 

58 C_-262 67 l l6 P_-4c2 131 173 P6, 172 
59 C_ 2b2ac 68 117 P4c2 e 132 174 P65 170 
60 C 2t, c2 64 118 P4c2ab 135 175 P62 177 
61 122 23 If9 P4n2 n 136 176 P62 183 
62 I22 44 120 P4ac2 ~ 137 177 P62 187 
63 I22_a 46 121 P4ac2 b 133 178 P62 189 
64 122 c 45 122 P__4ac2ac 138 179 P62 c 184 
65 /2,.2 24 123 P4ac2~c 134 180 P6c2 182 
66 122 71 124 14 79 181 P6_c2 185 
67 /_-22 c 72 125 I~, 82 182 P6~ 188 
68 /262 74 126 I41b 80 183 P6,2:_ c 186 
69 I262 c 73 127 142 97 184 P6c2 c 190 
70 F22 22 128 142 107 185 P612 178 
71 F2} 42 129 142 121 186 P622 180 
72 F22a 43 130 I,~2 119 187 P642 181 
73 F22 69 131 I42_c 108 188 P652 179 
74 P2uv2vw 70 132 I42 c 120 189 P6 175 

133 I4~2 98 190 fi6 c 176 
75 P4 75 134 I4nd2 109 191 P62 191 
76 P4 81 135 I4ba2 c 1 I0 192 P_-62 c 192 
77 P4 t 76 136 I_4ba2 c 122 193 P_ 6,.2 193 
78 P4~ 77 137 14 87 194 P6~2~ 194 
79 P43 78 138 /_-4oa 88 
80 P42 89 139 142 139 195 P223 195 
81 P42 99 140 /_-42 e 140 196 P2,~c2ab3 198 
82 P,{2 111 141 /_4ha2 141 197 P423 207 
83 P2,2 115 142 /4ha2 c 142 198 P2,23 215 
84 P4:2 c 103 199 P4.23 208 
85 P42c 112 143 P3 143 200 P4n23 218 
86 P42 c 116 144 P3 147 201 P4ba2ab3 213 
87 P42ab 100 145 P31 144 202 P_4~n2ab3 212 
88 P42ab 113 146 P32 145 203 P223 200 
89 P42ab 117 147 P32 149 204 ~2ac2ab3 205 
90 P42. 104 148 P32" 150 205 P2at,2~3 201 
91 P4_2. 114 149 P32 157 206 P423 221 
92 P42~ 118 150 P32" 156 207 /54~23 223 
93 P4c2 - 93 151 P32_~ 159 208 P4o2b~3 222 
94 P4c2 105 152 P32" 158 209 Pnt~.2bc3 224 
95 P4c2_c 101 153 P312 151 210 1223 197 
96 P4c2ab 106 154 P312" 152 211 12ac2ab3 199 
97 P4~2. 94 155 P322 153 212 I423 211 
98 P4.2. 102 156 P3_,2" 154 213 1423 217 
99 P412 91 157 /532 162 214 I4~2~b3 214 

100 P432 95 158 /532" 164 215 14~2ab3 220 
101 P4in2 . 96 159 P_-32 c 163 216 I223 204 
102 P4a,2 n 92 160 P32" 165 217 12ac2ab3 206 
103 P4ab2a~ 90 161 R3 P3* 146 218 1423 229 
104 P4 83 162 R32" P3"2 155 219 ]4bd2aO3 230 
105 P_-4 a 85 163 R32" P3"2 160 220 F223 196 
106 P4 c 84 164 R32" P3*2n 161 221 F423 209 
107 P4bc 86 165 R3 P3* 148 222 F2,23 216 
108 P42 123 166 /~32"/53*2 166 223 F4.23 219 
109 P42 c 124 167 R32"/53*2. 167 224 F4a23 210 
110 P42ab 127 225 F223 202 
111 P42. 128 168 P6 168 226 F_- 2~v2v~3 203 
112 P_4~2~ 129 169 t'6 174 227 F423 225 
113 P_4o2 b 125 170 P6 t 169 228 P_ 4.23 226 
114 P4~2~0 130 171 P62 171 229 F4~2,~3 227 
115 P4a2bc 126 172 P6~ 173 230 F4ud2vw3 228 
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Abstract 

A general expression for the diffracted intensities from 
an aggregate of partially disordered layer structures 
consisting of plane lattice layers displaced randomly 
along a and b by arbitrary fractions a/qa and b/qb has 
been worked out. The approach is similar to that of 
Wilson [X-ray Opt&s (1962). London: Methuen] and 
has been followed by Ray, De & Bhattacherjee [Clay 
Miner. (1980), 15, 393]. The expression is very 
general in nature and is suitable for studying the 
variation of intensities from such crystallites with any 
amount of displacements. Numerical computations for 
several cases have been carried out and results 
discussed. It is concluded that the peak will broaden 
and background increase as the magnitudes and 
probabilities of disorder increase. 

interesting to study the effect on the diffraction pattern 
when the layer is displaced in two directions simul- 
taneously by a/qa and b/qb along a and b, where qa and 
qb are both integers. As mentioned in the previous paper 
(Ray et al., 1980) such situations are closer to reality 
and are likely to occur in several minerals with a layer 
type structure, which are prone to this type of disorder 
because of their structural characteristics. Wilson 
(1962) has also made an attempt to study the 
diffraction from hexagonal cobalt with displacements 
a/3 and 2b/3. However, a more general expression of 
the diffracted intensity from a disordered structure of 
the above type is expected to be very useful in 
distinguishing between conglomerations of layer 
crystallites with different types of displacement and 
perhaps to estimate the magnitude of the displace- 
ments. The present work aims at fulfilling this objective. 

Introduction 

In a previous publication (Ray, De & Bhattacherjee, 
1980) a general expression for the diffracted intensities 
from a partially disordered layer structure with a 
displacement has been worked out. The displacement, 
as is commonly found in minerals, consists of a 
one-dimensional shift of a layer parallel to the adjacent 
layers by an arbitrary fraction b/q along the b axis, 
where q is any integer. This expression is quite suitable 
for investigating the nature of the diffraction pattern 
from the layer structure when the displacement is 
gradually changed by any fraction of the axial length b 
in this direction. It would be more general and 
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Theory 

The present derivation is based primarily on the model 
of disordered crystals with plane lattice layers as 
described in the previous work (Ray et al., 1980). Here 
too the layers are taken to be parallel to the ab plane 
with c perpendicular to the layer. The disorder consists 
of shifts of the layer parallel to itself by a/q a and b/qb 
along a and b respectively, where qa and qb are integers. 
All symbols used carry the usual meaning as in the 
previous publication (Ray et al., 1980). 

Let the shift of a layer be a/q a along the a axis and 
the probability of such shift be a. Corresponding 
quantities in the b direction for a layer are taken to be 
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