Space-Group Notation with an Explicit Origin

BY S. R. HALL

Crystallography Centre, University of Western Australia, Nedlands 6009, Australia

(Received 16 June 1980; accepted 21 January 1981)

Abstract

A set of symbols based on the minimum subset of Seitz matrices required to generate the complete symmetry may be derived for each of the three-dimensional crystallographic space groups. This has a number of desirable properties including explicit information on the choice of origin. It also leads to a simple and general algorithmic procedure for generating equivalent positions.

Introduction

Two main systems of crystallographic space group names are in use today. Schönflies notation originated with the early derivation of space groups (Schönflies, 1891) and International notation came into general use with the 'old' *International Tables for X-ray Crystallography* (Bragg, von Laue & Hermann, 1935). Both the International and Schönflies notations appear in the current issue of *International Tables for X-ray Crystallography*, Vol. I (Henry & Lonsdale, 1972).

International space-group notation is commonly used in crystallography because it contains explicit information about the nature and the orientation of the symmetry elements in any particular space group. This notation invokes a sequence of alphanumeric characters which specify the Bravais-lattice type, the constituent symmetry elements and the orientation of elements with respect to the cell axes. International Tables for X-ray Crystallography, Vol. I, lists these symbols in a 'full' and 'short' format. The full symbol contains complete information on the nature and orientation of the symmetry elements, while the short symbol contains the minimum subset of this information necessary to describe uniquely the essential point group and diffraction symmetry of the space group.

The diffraction symmetry information appears in the International short symbol as those translational elements which give rise to systematic absences (see p. 549, *International Tables for X-ray Crystallography*, Vol. I). Translational information which relates the symmetry operators to a cell origin is not included. This omission is not surprising since the choice of origin is irrelevant in diffraction space, and it is from this 0567-7394/81/040517-09\$01.00

direction that crystallographers have traditionally determined space-group symmetry.

It should be emphasized that from a group theoretical point of view the complete translational symmetry of each space group is *implicit* in the symmetry elements of the International symbol. However, the absence of explicit translational information in the space-group name places practical limitations on its use as a concise space-group descriptor. In the first place, most space groups have more than one possible origin. But origin specification is often desirable for easy comparison of symmetrically equivalent sites. International Tables for X-ray Crystallography, Vol. I, satisfies this requirement by listing the equivalent positions of each space group for a specific origin choice. Unfortunately, the selection of origins for the space groups as given in International Tables for X-ray *Crystallography* appears to have been arbitrary. This makes a consistent approach to generation of equivalent positions using the International notation unduly complicated.

The use of the International notation has several other disadvantages as a space-group descriptor. The implied directions of the pure and impure rotational elements vary according to the crystal system (see Table 3.3.2, *International Tables for X-ray Crystallography*, Vol. I). This further complicates the transcription of the International notation into the symmetry elements. Similarly the use of *redundant* symmetry information in the space-group names of certain crystal classes, but not of others, precludes a consistent procedure using these names to generate a complete set of symmetry elements for each of the space groups.

The space-group names described in this paper have the following properties:

(a) they contain explicit translational information which completely specifies the space-group origin;

(b) they contain no redundant symmetry information (*i.e.* they invoke a minimum subset of symmetry operators required to generate all elements);

(c) they explicitly distinguish centrosymmetric from noncentrosymmetric space groups;

(d) they provide direct information about the number of symmetry elements in the space group; and

(e) a very simple set of rules defines the implicit *directions* of rotational elements.

© 1981 International Union of Crystallography

Seitz matrix formalism

Each space group is composed of a unique set of symmetry operators in three-dimensional space. These operators are conveniently represented by 4×4 Seitz matrices (Seitz, 1936; Bradley & Cracknell, 1972) of the form

$$S = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)
$$= \begin{bmatrix} \frac{R}{1} & t \\ 0 & 1 \end{bmatrix}$$
(2)

$$= \{R/t\},$$
 (3)

where R is the 3×3 matrix defining the rotation operation and t is the vector defining the translation operation. The allowed values for $r_{11}, r_{12}, \ldots, r_{13}$ are 0, +1 or -1, and the elements t_1, t_2, t_3 are the fractions of the crystal unit cell 0, $\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{2}, \frac{3}{3}, \frac{3}{4}$, or $\frac{5}{6}$. That is, for a space group composed of n symmetry operators the binary product $S_i S_j = S_k$ must satisfy the condition that $1 \le \{i, j, k\} \le n$. It follows that there can exist subsets of Seitz matrices which also define uniquely the symmetry of a space group, and that enable the full set of symmetry operators to be generated simply by a process of binary multiplication. The *minimum* subset of Seitz matrices required to define a space group uniquely is the basis of the notation proposed in this paper and will be referred to henceforth as the set of *generator matrices*.

In International Tables for X-ray Crystallography, Vol. I, the complete set of symmetry operators for each space group is given as general equivalent positions expressed in the Jones Faithful representation \mathbf{x} (= x,y,z; etc.). The relationship between these two representations is simply

$$x = r_{11}x + r_{12}y + r_{13}z + t_1, \tag{4}$$

$$y = r_{21}x + r_{22}y + r_{23}z + t_2, \tag{5}$$

$$z = r_{31}x + r_{32}y + r_{33}z + t_3, \tag{6}$$

where x,y,z are coordinates in fractions of unit-cell axes along the principal cell directions. Equations (4)–(6) may be more concisely expressed for the *i*th symmetry operation as

$$\mathbf{x}_i = R_i \, \mathbf{x} + \mathbf{t}_i \tag{7}$$

or simply

$$(\mathbf{x},1)_i = S_i(\mathbf{x},1).$$
 (8)

The convenience of the Seitz matrix formalism can be illustrated by considering the relationship between symmetry operations in real and reciprocal space. Each space group defines a set of symmetry operations in reciprocal space, referred to as equivalent reflections \mathbf{h} (= h,k,l; *etc.*). The *i*th equivalent reflection \mathbf{h}_i and corresponding phase shift Δ_i (in cycles $1 \cdot 0 = 2\pi$) may be expressed in Seitz notation as

$$(\mathbf{h}, \varDelta)_i = (\mathbf{h}, 0) S_i. \tag{9}$$

This is equivalent to the equations

$$h = r_{11}h + r_{21}k + r_{31}l, \qquad (10)$$

$$k = r_{12} h + r_{22} k + r_{32} l, \qquad (11)$$

$$l = r_{13} h + r_{23} k + r_{33} /, \qquad (12)$$

and

$$\Delta = t_1 h + t_2 k + t_3 l.$$
 (13)

Computer application of Seitz matrices

Every form of space-group symmetry is defined uniquely by the associated Seitz matrices. Information such as special positions in real space, site reflection multiplicities, systematic absences, intensity reinforcement factors, and structure seminvariant relationships may be obtained directly from these matrices. Computationally it is of significant practical value to use these matrices as the sole source of space-group information. Thus a space group need be specified only once, after which all subsequent symmetry considerations can be handled automatically. The advantages of this approach in the use of space-group symmetry include user convenience, minimization of input errors and reduced computer storage requirements.

In many cases of existing crystallographic computer software this approach to space-group definition has been adopted. Some computer programs require as input the complete set of \cap symmetry operators as either equivalent positions \mathbf{x}_i (Stewart, 1976; Main, Woolfson & Germain, 1971) or as R_i matrices and \mathbf{t}_i vectors (Ahmed, Hall, Pippy & Huber, 1966). For higher-symmetry space groups this is a tedious and error-prone task. The use of equivalent positions is also dependent upon whether the crystal settings used are those listed in *International Tables for X-ray Crystallography*, Vol. I.

Clearly it would be more desirable to specify the space-group symmetry in terms of a unique but simple name. This has been attempted in some programs which depend upon the short form of the International space-group name (Larson, 1969; Burzlaff, Böhme & Jomm, 1977). However, because of the difficulties of origin definition and the order and choice of symbols referred to above, a large and relatively complex program segment is needed to generate from these names the complete set of equivalent positions given in *International Tables for X-ray Crystallography*, Vol. I.

Proposed space-group notation

The notation proposed in this paper results from an attempt to combine the computational advantages of an abbreviated name with the precise definition of a space group provided by its Seitz matrices. It is thus in essence a symbolic representation of the minimum set of Seitz matrices required to generate all the symmetry elements of each space group.

The proposed space-group notation has the general format:

$$L[N_T^A]_1[N_T^A]_2[N_T^A]_3$$

L is the lattice symbol which specifies the pure translational symmetry associated with the elementary rotation matrix E and the inversion matrix -E. These are described in detail in Table 1.

 N_T^A is a combined symbol which describes the Seitz matrix to be used as a generator. T is the symbol denoting the translation vector t (see Table 2) and N^A is the symbol specifying the rotation matrix R with respect to an axis 'A' (see Tables 3, 4 and 5). The general form of N_T^A is such that N is either a positive integer (1, 2, 3, 4 or 6) designating the order of a proper rotation, or a negative integer (1, 2, 3, 4 or 6)designating the order of an improper rotation. The axis

Table 1. Lattice symbol L

The lattice symbol L of the space-group name specifies one or more generator matrices. Symbols with an overbar specify a centrosymmetric space group and two matrices related by an inversion centre. The number of generator matrices implied by each symbol is given as nS.

symbols	are	limited	to	х,	y, z	, ",	'	and	*	to	den	ote
symmetr	y op	perations	s in	th	e a ,	b, c	2, 1	a + 1	bС	j, e	a — t	$\mathbf{b}_{\mathbf{C}}$
and $\mathbf{a} + \mathbf{l}$	b + (c 🔿 dire	ctio	ns,	resp	ectiv	elv	7.				

The subscript symbol T is blank when $\mathbf{t} = (0,0,0)$ or some combination of alphanumeric symbols when specifying a fractional translation vector. For example, the subscript 'ad' specifies the translation vector $\mathbf{t} =$ $(\frac{1}{2},0,0) + (\frac{1}{4},\frac{1}{4},\frac{1}{4}) = (\frac{3}{4},\frac{1}{4},\frac{1}{4})$. The subscript '2' of the combined symbol $3\frac{z}{2}$ refers to translation vector $(0,0,\frac{2}{3})$.

Table 2. Translation symbol T

The subscript symbol T specifies the translation component of each generator matrix. Alphabetic symbols specify fractional translations along a fixed direction. Numeric symbols specify translations as a fraction of the rotation order N and in the direction of the implied or explicitly defined axis.

Subscript symbol	Translation vector t	Subscript symbol	Translation vector t
а	¹ / ₂ ,0,0	1 in 3,	1
b	$0,\frac{1}{2},0$	2 in 3,	2
с	$0, 0, \frac{1}{2}$	1 in 4,	1
n	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	3 in 4,	3
и	1,0,0	$1 \text{ in } 6_1$	1
v	$0,\frac{1}{4},0$	2 in 6,	1
w	$0, 0, \frac{1}{4}$	4 in 6	2
d	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	$5 \text{ in } 6_5$	Se

Table 3. Rotation symbol N^A for principal axes

The symbol N^A specifies the order of rotation (N) and the axial direction of rotation superscript A. This table lists N for the three principal unit-cell directions. Improper rotations are specified by an overbar. $R(\bar{n}) = -R(n)$.

given as nS	•					Rotation		Rotation co	mponent R	
Noncentros	symmetric	Centrosy	mmetric	Implied lattice	Symbol	axis	N=2	N = 3	N = 4	N = 6
symbol P A B	nS† 1 2 2	symbol Ā Ā	nS‡ 2 4 4	translation t 0,0,0 0,0,0 $0,\frac{1}{2},\frac{1}{2}$ 0,0,0 $\frac{1}{2},0,\frac{1}{4}$	N×	а	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \bar{1} \\ 0 & 1 & \bar{1} \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \overline{1} \\ 0 & 1 & 0 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} $
C I R F	2 2 3 4	Ċ Ĭ Ŕ F	4 4 6 8	$\begin{array}{c} 0,0,0 & \frac{1}{2},\frac{1}{2},0 \\ 0,0,0 & \frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 0,0,0 & \frac{1}{2},\frac{1}{2},\frac{1}{2} \\ 0,0,0 & \frac{1}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{1}{3},\frac{1}{3} \\ 0,0,0 & 0,\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\frac{1}{3},\frac{1}{3},\frac{1}{3},0 \end{array}$	N ^y	b	$\begin{pmatrix} \bar{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \bar{1} \end{pmatrix}$	$\begin{pmatrix} \bar{1} & 0 & 1 \\ 0 & 1 & 0 \\ \bar{1} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \bar{1} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \bar{1} & 0 & 1 \end{pmatrix}$
† Implies ‡ Implies	R = E. R = E and	1-E, when	The $E \equiv \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$_{1}$) and $-E = \begin{pmatrix} \bar{1} & \bar{1} \\ \bar{1} & \bar{1} \end{pmatrix}$.	N²	c	$\begin{pmatrix} \bar{1} & 0 & 0 \\ 0 & \bar{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & \bar{1} & 0 \\ 1 & \bar{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & \bar{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & \bar{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Table 4.	Rotation	symbol N	A for	face-dia	gonal	axes

The symbols for face-diagonal twofold rotations are 2' and 2''. The face-diagonal rotation matrices R are implied by the preceding rotor symbol which defines the unique axis.

Category	Precedeo	d by N ^x	Precede	d by N ^y	Preceded by N^z		
Symbol	2'	2''	2'	2′′	2'	2''	
Rotation axis	b – c	$\mathbf{b} + \mathbf{c}$	a — c	a + c	a — b	a + b	
Rotation matrix <i>R</i>	$\begin{pmatrix} \bar{1} & 0 & 0 \\ 0 & 0 & \bar{1} \\ 0 & \bar{1} & 0 \end{pmatrix}$	$\begin{pmatrix} \bar{1} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \bar{1} \\ 0 & \bar{1} & 0 \\ \bar{1} & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & \bar{1} & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \bar{1} & 0 \\ \bar{1} & 0 & 0 \\ 0 & 0 & \bar{1} \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \bar{1} \end{pmatrix}$	

Table 5. Rotation symbol N^A for body-diagonal axes

The symbol for the body-diagonal threefold rotation is 3^* . This defines the matrix for the $\mathbf{a} + \mathbf{b} + \mathbf{c}$ direction.

Symbol	Rotation axis	Rotation matrix <i>R</i>
3*	a + b + c	$ \left(\begin{array}{rrrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) $

Some typical examples of Seitz matrices specified by N_T^A symbols are:

$$\bar{2}_{c}^{x} \equiv \begin{pmatrix} \bar{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}; \quad 3^{*} \equiv \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix};$$

$$4_{\nu w}^{z} \equiv \begin{pmatrix} 0 & \bar{1} & 0 & 0 \\ 1 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Implied order for symmetry axes

The explicit form of the matrix symbols N_T^A means that space-group definition is essentially independent of the order they appear in the names.[†] It is desirable, however, to standardize the *order* of the matrix symbols for a number of practical reasons. It aids in the recognition of a space-group name and most importantly it facilitates an overall simplification of the notation. A simple set of rules for ordering the N_T^A symbols can enable most axis designations to be *implied* rather than *declared* explicitly with the symbol A.

The proposed space-group names listed in Table 6 use the following rules to define implicitly the direction of symmetry operations.

When the axis symbol A is omitted

the *first* symbol N_T refers to the axis direction **c**; the *subsequent* N_T symbols refer to the axis direction

a if
$$N = 2$$
 preceded by $N = 2$ or 4,
a - **b** if $N = 2$ preceded by $N = 3$ or 6,
and **a** + **b** + **c** if $N = 3$.

In addition to their simplicity, these rules have several important advantages over those governing the International notation. Firstly, they are self-defining and independent of the crystal system; secondly, the unique axis for all space groups is implied to be along c; and

thirdly, there is no need for redundant symbols to satisfy an implied axis order.

There is one further important difference. The proposed notation distinguishes quite clearly between the two alternative axial systems possible for some trigonal space groups. The primitive definition is used for the rhombohedral axes, while the R-centred cell is identified explicitly for hexagonal axes. The use of two names for a single space group is consistent both with the change in symmetry operators expected with a change in axial assignment, and with the self-defining nature of the proposed notation.

Generation of equivalent positions

Step 1: Decode space-group symbols

The generation of a complete set of equivalent positions for a given space group is a relatively straightforward procedure. The first step is to decode the space-group symbols into the 'generator' matrices. This process is illustrated with a number of examples. In each example the number of generator matrice m is simply the sum of the Seitz matrices contributed by each component of the space group name. For instance, in example (ii) the lattice symbol I contributes four Seitz matrices, two from the I centre and two from the inversion 1. Similarly, the number of equivalent positions n for any space group comes directly from the *product* of the symmetry operations implied from each component of the space-group name. Again, in example (ii) the fourfold operator contributes four equivalent positions, while 2_c contributes two.

(i) $P2_{ac} 2$ (No. 31, $Pmn2_1$) decodes into m = 3 Seitz matrices which generate n = 1.2.2 = 4 equivalent positions.

$$P: S_{1} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix};$$

$$2_{ac}: S_{2} = \begin{pmatrix} \bar{1} & & \frac{1}{2} \\ & \bar{1} & 0 \\ & & 1 & \frac{1}{2} \\ & & & 1 \end{pmatrix}; \quad \bar{2}: S_{3} = \begin{pmatrix} \bar{1} & & \\ & 1 & \\ & & 1 \end{pmatrix}.$$

(ii) $I42_c$ (No. 140, I4/mcm) decodes into $m = 6\ddagger$ Seitz matrices which generate n = 4.4.2 = 32 equivalent positions.

[†] The exception being the face-diagonal symbols which must be preceded by a symbol defining a unique axis.

[‡] In practice it is not necessary to add to the generator list those matrices due either to a centred cell or to an inversion centre. It is usually more convenient to exclude all matrices related by a centre or an inversion from the symmetry elements and flag these properties of the space group separately. Each full set of generator matrices is shown in these examples to illustrate the complete expansion of the lattice symbol.

$$\bar{I}: S_{1} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & 1 & \end{pmatrix}, \qquad S_{2} = \begin{pmatrix} 1 & & & \frac{1}{2} \\ & 1 & & \frac{1}{2} \\ & & 1 & \frac{1}{2} \\ & & 1 & \\ \end{pmatrix}, \qquad S_{3} = \begin{pmatrix} \bar{1} & & & \\ & \bar{1} & & \\ & & 1 & \\ & & 1 & \\ \end{pmatrix}, \qquad S_{4} = \begin{pmatrix} \bar{1} & & & \frac{1}{2} \\ & & & \frac{1}{2} \\ & & & 1 & \\ \end{pmatrix}; \qquad 4: S_{5} = \begin{pmatrix} 1 & & & & \\ & 1 & & \\ & & & 1 & \\ & & & 1 & \\ \end{pmatrix}; \quad 2_{c}: S_{6} = \begin{pmatrix} 1 & & & & \\ & \bar{1} & & \\ & & & 1 & \\ & & & 1 & \\ \end{pmatrix}.$$

(iii) $R32_c''$ (No. 161, R3c) decodes into m = 5† Seitz matrices which generate n = 3.3.2 = 18 equivalent positions.

$$R: S_{1} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad S_{2} = \begin{pmatrix} 1 & & \frac{2}{3} \\ & 1 & \frac{1}{3} \\ & & 1 & \frac{1}{3} \\ & & 1 & \frac{1}{3} \\ & & & 1 \end{pmatrix},$$
$$S_{3} = \begin{pmatrix} 1 & & \frac{1}{3} \\ & 1 & \frac{2}{3} \\ & & 1 & \frac{2}{3} \\ & & & 1 \end{pmatrix}; \quad 3: S_{4} = \begin{pmatrix} & & \bar{1} \\ & & 1 \\ & & & 1 \end{pmatrix};$$
$$\bar{2}_{c}'': S_{5} = \begin{pmatrix} & \bar{1} & & 0 \\ & & & \bar{1} & \frac{1}{2} \\ & & & 1 \end{pmatrix}.$$

(iv) $P3^*2'_n$ (No. 161, R3c) decodes into m = 3 Seitz matrices which generate n = 1.3.2 = 6 equivalent positions.

$$P: S_{1} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix};$$

$$3^{*}: S_{2} = \begin{pmatrix} 1 & & \\ 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}; \quad \bar{2}'_{n}: S_{3} = \begin{pmatrix} 1 & & \frac{1}{2} \\ & 1 & \frac{1}{2} \\ & 1 & \frac{1}{2} \\ & & 1 \end{pmatrix}.$$

(v) $\overline{P}423$ (No. 221, Pm3m) decodes into $m = 5^{\dagger}$ Seitz matrices which generate n = 2.4.2.3 = 48 equivalent positions.

$$\tilde{P}: S_{1} = \begin{pmatrix} 1 & 1 \\ & 1 & \\ & & 1 \end{pmatrix}, \quad S_{2} = \begin{pmatrix} \bar{1} & \bar{1} \\ & \bar{1} & \\ & & 1 \end{pmatrix}; \\
4: S_{3} = \begin{pmatrix} 1 & 1 \\ & & 1 \\ & & 1 \end{pmatrix}; \quad 2: S_{4} = \begin{pmatrix} 1 & \bar{1} & \\ & \bar{1} & \\ & & 1 \end{pmatrix}; \\
3: S_{5} = \begin{pmatrix} 1 & 1 \\ & 1 & \\ & & 1 \end{pmatrix}.$$

Step 2: Generate symmetry operators

The second stage of the generation process is to multiply together the m matrices in the generator list to obtain new matrices. Each matrix so formed is added to the list, and used in turn to form further binary products. This process, applied exhaustively, results in the generation of a set of matrices representing all possible symmetry operations in a space group. Since the number of unique symmetry operations n is specified explicitly by the notation (see the above examples) the generation process may be curtailed as soon as the list count m reaches n.

An algorithmic procedure for matrix generation is given below. R is the 3×3 partition of the 4×4 S matrix and the m and n are counts that do not include matrices related by a centre or an inversion.

do $i = 2$ to m	outer generator loop
do j = 2 to m	inner generator loop
$\{ S(m + 1) = S(i) * S(j) \}$	form new Seitz matrix
for $k = 1$ to m + 1	inner search loop
$\{ \text{if } R(m+1) = +R(k) \}$	test for unique rotation
or $R(m + 1) = -R(k)$ exit loop	matrix exit if not
$m = \max(m, k)$	extend list if unique
} if m = n exit loop	exit when list complete
}	end of generation process

The procedure assumes, of course, that the list of matrices supplied by the 'decode' step are sensible and correct. In practice, it is necessary to have additional steps in this procedure as a protection against user error. Usually these would test both the space-group symbols and the generated matrices for logical integrity.

In addition it is desirable to output the general equivalent positions in the Jones Faithful representation (*i.e.* x,y,z; *etc.*), and the systematic absence conditions for *hkl* diffraction data. Although not essential these provisions provide in both real and reciprocal space the symmetry data in more familiar form. In both cases this information may be derived directly from the Seitz matrices.

[†] See footnote [‡] on p. 520.

SPACE-GROUP NOTATION WITH AN EXPLICIT ORIGIN

Table 6. Proposed space-group names

IT = International Tables for X-ray Crystallography

IT No.	International notation	Proposed notation	IT No.	International notation	Proposed notation	IT No.	International notation	Proposed notation	I IT No.	nternational notation	Proposed notation
1	P 1	<i>P</i> 1	58	Pnnm	₽22 _n	116	PĀc2	$P\hat{4}\hat{2}_{c}$	173	P6,	P6,
2	РĪ	Ρ1	59	Pmmn	$P2_{ab}2_a$	117	PĀb2	PÁŽab	174	PĜ	P6
			60	Pbcn	$P2_n2_{ab}$	118	P4n2	P42,	175	P6/m	<u>Р</u> 6
3	P2	P2	61	Pbca	$P2_{ac}2_{ab}$	119	I4m2	I42	176	$P6_3/m$	Р 6 _с
4	P2 ₁	P2 _c	62	Pnma	$\bar{P}2_{ac}^{2}2_{n}$	120	IÅc2	I42,	177	P622	P62
5	B2	B2	63	Cmcm	Č2,2	121	I42m	<i>I</i> 42	178	P6.22	P6.2
6	Pm	PŽ	64	Cmca	$\tilde{C}2_{hc}^{2}$	122	I42d	142 _{bw}	179	P6.22	P6.2
7	Pb	$P\bar{2}_{b}$	65	Cmmm	Č22	123	P4/mmm	P42	180	P6,22	P6.2
8	Bm	ВŽ	66	Cccm	Č22,	124	P4/mcc	P42,	181	P6.22	P6.2
9	Bb	$B\bar{2}_{h}$	67	Cmma	Č2,2	125	P4/nbm	$P4_{a}2_{b}$	182	P6,22	P6.2
10	P2/m	₽2 [°]	68	Ccca	$\bar{C}2_{p}^{2}2_{qc}$	126	P4/nnc	$\bar{P}4_{a}^{2}2_{bc}$	183	, P6mm	P62
11	$P2_1/m$	₽2 _c	69	Fmmm	F22	127	P4/mbm	P42 ab	184	P6cc	P62.
12	B2/m	₿2	70	Fddd	F22	128	P4/mnc	P42_	185	P6.cm	P6 2
13	P2/b	₽2 ₆	71	Immm	Ī22	129	P4/nmm	P4_2	186	$P6_{2}mc$	P6.2
14	$P2_1/b$	$\bar{P}2_{bc}$	72	Ibam	Ī22,	130	P4/ncc	P4_2_	187	P6m2	P62
15	B2/b	B2	73	Ibca	Ĩ2,2,	131	P4,/mmc	P4.2	188	Pēc2	P6 2
		U	74	Imma	Ĩ2,2	132	P4_/mcm	P4.2.	189	P62m	P62
16	P222	P22			b	133	P4_nbc	P42.	190	P62.	P6.2.
17	P222	P2_2	75	P4	P4	134	P4_/nnm	P42.	191	P6/mmm	P62
18	P2,2,2	$P22_{ab}$	76	P4,	P4.	135	P4_mbc	P4 2 .	192	P6/mcc	P62
19	P2,2,2,	$P2_{ac}2_{ab}$	77	P4,	P4.	136	$P4_{mnm}$	$P4_2$	193	$P6_{1}/mcm$	P6 2
20	C222,	C2_2	78	P4,	P4,	137	$P4_nmc$	P4_2	194	$P6_{1}/mmc$	P6 2
21	C222	C22	79	<i>I</i> 4	<i>I</i> 4	138	P4_/ncm	P4_2_	., .	1 03,	10,20
22	F222	F22	80	<i>I</i> 4,	14,10	139	I4/mmm	$\overline{I}42$	195	P23	P223
23	I222	122	81	PÅ	PĂ	140	I4/mcm	Ī42.	196	F23	F223
24	12,2,2,	$I2_{ac}2_{ab}$	82	IĀ	IÅ	141	I4./amd	Ī42	197	123	1223
25	Pmm2	P22	83	P4/m	<i>P</i> 4	142	I4,/acd	I4.2.	198	P2,3	$P2_{a}2_{a}3$
26	Pmc2	P2,2	84	$P4_{3}/m$	₽4,			- · <i>ba</i> -c	199	12,3	$I2_{-2}$
27	Pcc2	P22,	85	P4/n	₽4_	143	P3	P3	200	Pm3	P223
28	Pma2	P22,	86	$P4_{2}/n$	P4,	144	P3,	P3,	201	Pn3	P2-2-3
29	$Pca2_1$	$P2_c \tilde{\bar{2}}_{ac}$	87	I4/m	Ī4	145	P3,	P3,	202	Fm3	F223
30	Pnc2	P22 _{bc}	88	I4,/a	Ĩ4 _{ad}	146	R3	R3 P3*	203	Fd3	Ē2,2,
31	Pmn2	$P2_{ac}^{2}$	89	P422	P42	147	РĴ	₽3	204	Im3	Ī223
32	Pba2	P22ah	90	P42,2	$P4_{ab}2_{ab}$	148	RĨ	₽3 ₽3*	205	Pa3	$\tilde{P}2_{ac}2_{ab}3$
33	Pna2 ₁	$P2_c \overline{\tilde{2}_n}$	91	P4,22	P4,2	149	P312	P32	206	Ia3	$\tilde{I}2_{ac}2_{ab}3$
34	Pnn2	$P2\overline{2}_n$	92	P4,2,2	P43, 2, w	150	P321	P32''	207	P432	P423
35	Cmm2	C22	93	P4,22	P4_2	151	P3,12	P3,2	208	P4,32	P4,23
36	$Cmc2_1$	C2_2	94	P4,2,2	P4_2_	152	P3,21	P3,2"	209	F432	F423
37	Ccc2	C22.	95	P4,22	P4,2	153	P3,12	P3,2	210	F4,32	F4 _d 23
38	Amm2	A22	96	P4,2,2	$P4_{1n}2_{abw}$	154	P3,21	P3,2"	211	1432	1423
39	Abm2	A22 _b	97	I422	<i>I</i> 42	155	R32	R32" P3*2	212	P4,32	$P4_{hdn}2_{ab}3$
40	Ama2	$A2\bar{2}_a$	98	I4 ₁ 22	$I4_{1b}2_{bw}$	156	P3m1	P32"	213	P4,32	$P4_{bd}2_{ab}3$
41	Aba2	$A2\bar{2}_{ab}$	99	P4mm	P42	157	P31m	P32	214	I4 ₁ 32	$I4_{bd}2_{ab}3$
42	Fmm2	F22	100	P4bm	P42 _{ab}	158	P3c1	P32,"	215	P43m	P423
43	Fdd2	F22,	101	$P4_2cm$	$P4_c \tilde{2}_c$	159	P31c	P32	216	F43m	F423
44	Imm2	122	102	$P4_2nm$	P4,2,	160	R3m	R32" P3*2	217	I 4 3m	I423
45	Iba2	I22.	103	P4cc	P42,	161	R3c	R3Ž" P3*Ž.	218	P43n	P4_23
46	Ima2	122	104	P4nc	P42,	162	P31m	P32 "	219	F43c	F4.23
47	Pmmm	P22	105	$P4_2mc$	P4_2	163	P31c	P32,	220	I43d	14 da 2 ab 3
48	Pnnn	₽22.	106	P4,bc	$P4_{c}2_{ab}$	164	P3m1	P32"	221	Pm3m	P423
49	Prem	Þ	107	I4mm	I42	165	P3c1	₽32″	222	Pn3n	P4 2, 3
50	Phan	ρ	108	I4cm	142.	166	R ³ m	R37" P3*7	223	Pm3n	P4 23
51	Pmma	\tilde{P}	109	14.md	142	167	RĴc	R32" P3*2	224	Pn3m	P4. 2. 3
52	Dung	$\frac{1}{D} \frac{1}{2} \frac{1}$	110	I4.cd	14.2				225	- 113111 Fm3m	F473
52	Pmnc	$\frac{1}{D} \frac{2}{D} \frac{1}{D} \frac{1}$	111	$P\bar{4}2m$	PA2	168	P6	P6	225	Fm3c	F4 22
53	Peca		112	P42c	PÅ2	160	P6	P6	220	Fd3m	$\bar{F}\Delta$ γ γ
54	Pham	$\frac{1}{D} \frac{2}{a^2} \frac{a^2}{ac}$	113	P42.m	P42	170	P6	P6	228	Fd3c	F4 7 2
55	r uuri Baan	\tilde{P}_{2}	114	P42.c	$P\dot{A}$	171	P6	P6	220	Im3m	1423
50	Pham	$\frac{\Gamma L_{ab}L_{ac}}{D_{2}}$	115	$P\bar{4}m^2$	P47	172	P6	P6	230	In3d	14. 2.3
51	rucm	1 ² c ² b		2 -111 L		112	104	4 04	200	- 404	- "bd = ab"

Comparison of generated equivalent positions with those in International Tables for X-ray Crystallography

The generation procedure outlined above will, except for some centred-space-group names, provide equivalent positions identical to those in *International Tables* for X-ray Crystallography, Vol. I. The exceptions arise when the non-centred subgroup of equivalent positions listed in *International Tables for X-ray Crystallography* is inconsistent with a sequential generation process. Differences occur only if matrices related by a centre or an inversion are not generated but implied. If all matrices are generated, they are identical to the complete set of equivalent positions *implied* in *International Tables for X-ray Crystallography*, Vol. I. It follows that the generated subgroup of symmetry elements is identically equivalent for the majority of symmetry requirements.

Nonconventional space-group settings

Constructing new space-group names for nonconventional settings is a relatively straightforward task. Rotations can be assigned to any direction with the axis symbol A. As discussed above, a matrix generation process will normally check the symbolic name and equivalent positions for logical integrity. In addition, the systematic absences derived from this process can be validated against the measured diffraction data. In general, the proposed notation is no more difficult to use with nonconventional settings than is the existing International notation, even when the tables of International notation to translate nonconventional settings for space groups in the monoclinic and orthorhombic systems (*International Tables for X-ray Crystallography*, Vol. I, Tables 6.2.1) are taken into account.

To illustrate the use of a nonconventional spacegroup setting, consider space group No. 41 in *International Tables for X-ray Crystallography*, Vol. I, pp. 547 and 549.

	Notat	ion			
Axes	International	Proposed	Re	flection cond	itions
abc	Aba2	A22 _{ab}	hkl 0kl h0l hk0	k + l = 2n k = 2n; h = 2n; (k = 2n)	(l=2n) $(l=2n)$
cab	B2cb	$B2^x \hat{2}_{bc}^y$	(hkl 0kl h0l hk0	h + l = 2n ($l = 2n$) ($h = 2n$); ($h = 2n$);	l = 2n $k = 2n$
acb	Ac2a	$A2^{y}\bar{2}^{z}_{ac}$	(hki 0ki h0i hk0	k + l = 2n (k = 2n); (l = 2n) h = 2n;	l = 2n $(k = 2n)$

Different origin choice and order to International Tables for X-ray Crystallography

Any proposal for new space-group notation would be incomplete without some *a priori* consideration of how the space-group names might be tabulated; that is, if the particular origin choice and space-group order adopted in *International Tables for X-ray Crystallography*, Vol. I, was ignored.

Table 7 shows the result of an approach to space-group arrangement based on similarity of symmetry operators and the number of symmetry elements. The ordering is simple and consistent with recognized operator subgroups. The subgroups of space groups are arranged in approximate order of increasing symmetry.

Conclusion

The proposed space-group notation gives a precise description of space-group symmetry. The explicit definition of the space-group inversion centre and the clear separation of rotation, translation and axisdirection symbols provides direct and easily interpretable information about the symmetry of any group. The construction and format of the notation make it particularly suited to computer generation of symmetry information. Because it is a concise representation of symmetry in real space it should also be attractive to disciplines other than crystallography. Certainly the existing International notation is limited for many workers in non-crystallographic fields because the name itself cannot be readily interpreted in either real or reciprocal space. This deficiency could be one of the reasons why International notation has not gained wider acceptance in other scientific disciplines.

There is an ever-increasing use of computers in the collection and processing of scientific data. Tabulated information currently extracted from books will in the future be generated by computer in much the same way as sine, cosine and exponential values are today. Space-group information, which has traditionally been extracted from *International Tables for X-ray Crystallography*, Vol. I, will increasingly be computer-generated. The need for a simple and efficient procedure for performing this task is of prime importance.

The author wishes to thank Drs E. N. Maslen, K. J. Watson and A. H. White of the Crystallography Centre for discussion of the proposed notation and for their suggestions to the text of this paper. Thanks are also due to a number of workers whose interests in the computer generation of symmetry information and encouragement finally led to the preparation of this paper.

SPACE-GROUP NOTATION WITH AN EXPLICIT ORIGIN

Table 7. Proposed ordering of space groups

IT = International Tables for X-ray Crystallography.

F	roposed	1T	Pro	oposed	IT	Pro	posed	IT	Pro	posed	IT
order	notation	order	order	notation	order	order	notation	order	order	notation	order
1	<i>P</i> 1	1	58	ēr r	67	116	ĒΛ 🤉	131	173	P6	172
2	Ď1	2	50	Č2,2	68	117	\bar{p}_{A}	132	174	P6	170
2	11	2	60	C2,22	64	119	D4 2	132	174	D60	177
2	D1	2	60	C_{bc}^2	04	110	$P_{c}^{2}ab$	135	175	P02	192
3	P2	3	01	122	23	119	$P4_n 2_n$	130	176	P02	103
4	P2	6	62	122	44	120	$P4_{ac}2_{a}$	137	177	P62	187
5	$P2_c$	4	63	122 _a	46	121	$P4_{ac}2_{b}$	133	178	P62	189
6	P2b	7	64	122 _c	45	122	$P_{ac}^2 2_{ac}$	138	179	P62 _c	184
7	P2	10	65	I2 _c 2	24	123	$P4_{ac}2_{bc}$	134	180	$P6_c^2$	182
8	Ρ2 _c	11	66	122	71	124	<i>I</i> 4	79	181	P6,2	185
9	$\bar{P}2_{h}$	13	67	Ī22,	72	125	IĀ	82	182	P6,2	188
10	$\bar{P}2_{hc}$	14	68	Ĩ2 <u>,</u> 2	74	126	I41b	80	183	P6,2	186
11	B2	5	69	Ī2,2	73	127	I42	97	184	P6.2	190
12	ΒĪ	8	70	F22	22	128	142	107	185	P6.2	178
13	ВŹ.	9	71	$F2\overline{2}$	42	129	142	121	186	P6.2	180
14	Ř2	12	72	F22.	43	130	142	119	187	P6.2	181
15	Ř2.	15	73	Ē22	69	131	142	108	188	P6.2	179
15	D 2 b	15	74	Ē2 2	70	122	1420	120	180	P6	175
16	D1 1	16	/4	1 ZuvZvw	10	132	1420	120	100	<u> </u>	176
10	F 22 DDD	10	75	D4	75	133		96	190	P0 D60	101
1/	P22n	10	75	Г4 Л	75	134	14_{bd}	109	191	P02	102
10	P22	25	/0	P4	81	135	$14_{bd}2_c$	110	192	PO2 _c	192
19	P22 _a	28	11	$P4_1$	/6	136	$14_{bd}2_c$	122	193	P6,2	193
20	$P22_c$	27	78	$P4_c$	77	137	<u>I</u> 4	87	194	$P6_c2_c$	194
21	$P22_{ab}$	32	79	P43	78	138	I4 _{ad}	88			
22	$P22_{bc}$	30	80	P42	89	139	<i>I</i> 42	139	195	P223	195
23	P22,	34	81	P42	99	140	Ī42,	140	196	$P2_{ac}2_{ab}3$	198
24	P2_2	17	82	P42	111	141	$\overline{I4}_{hd}^{2}$	141	197	P423	207
25	P2_2	19	83	P42	115	142	$\bar{I}4_{bd}2_{c}$	142	198	P423	215
26	P2.Ž	26	84	P42.	103		bult		199	P4_23	208
27	P2 2	31	85	P42	112	143	P3	143	200	P4 23	218
28	P2 2	29	86	PAZ	116	144	P3	147	201	P42 .3	213
20	$P^{2}\bar{2}$	33	87	PAZ	100	145	P3.	144	201	PA 2.3	212
20	D	47	07		112	145	P3	145	202	DDDD	200
21	F 2 2 1722	47	00		115	140	P22	140	203	F223	200
21	P22	49	89	P42 _{ab}	117	147	132	149	204	$P_{ac}^{2}ab^{3}$	203
32	\overline{P}_{22ab}	33	90	$P42_n$	104	148	F32 D22	150	205	$P_{ab}^{2}_{bc}^{3}$	201
33	P22,	58	91	P42,	114	149	P32	157	206	P423	221
34	$P_{a}^{2}a^{2}a$	51	92	$P42_n$	118	150	P32"	156	207	P4,23	223
35	$P2_a2_n$	60	93	$P4_{c}2$	93	151	$P32_c$	159	208	$P4_a2_{bc}3$	222
36	$P2_a2_{ab}$	57	94	$P4_{c}2$	105	152	$P32_c''$	158	209	$P4_{bc}2_{bc}3$	224
37	$P_2_a 2_{bc}$	52	95	$P4_c 2_c$	101	153	P3 ₁ 2	151	210	1223	197
38	$P2_{ac}^2$	53	96	$P4_{c}2_{ab}$	106	154	P3 ₁ 2"	152	211	$I2_{ac}2_{ab}3$	199
39	$\bar{P}2_{ac}2_{c}$	54	97	$P4_n2_n$	94	155	P322	153	212	1423	211
40	$\bar{P}2_{ac}^{2}2_{ab}$	61	98	P4,2,	102	156	P322"	154	213	IĀ23	217
41	₽2_2,2	62	99	P4,2	91	157	P32	162	214	14,2,3	214
42	P2_22	59	100	P4.2	95	158	P32''	164	215	14.2.3	220
43	P2_2	50	101	P4, 2	96	159	P32	163	216	Ī223	204
44	P.,2.	56	102	PA^{2}	02	160	้อ้าวที่	165	217	12 2.3	206
45	P2.2	48	102	PA, 2	00	161	D3 D3*	146	218	1423	229
46	C^{22}	21	103	I ¬ab⊥ab DA	83	167	D21// D2*1	155	210	1425	230
17	C22	35	104	14 D4	05	162	NJ2 FJ2 DJJ// DJ#J	155	219	FDD2	106
10	C22	33	105	P4a D4	03	103	R32" P3'2	160	220	F 223	200
40	C2 2	20	100	14c	04	104	K32° P3°2n	101	221	F423	209
49	C2,2	20	107	P4 _{bc}	80	105	K5 P5*	148	222	r423	210
50		30	108	P42	123	166	R32" P3*2	166	223	$F4_{n}23$	219
51	C2'2	38	109	<u>P</u> 42 _c	124	167	$R32_{c}^{\prime\prime}P3^{*}2_{n}$	167	224	$F4_d 23$	210
52	$C2^{y}2_{a}$	39	110	$P42_{ab}$	127				225	F223	202
53	C2 ^y 2 _c	40	111	P42	128	168	P6	168	226	$\bar{F}2_{\mu\nu}^{2}2_{\nu\mu}^{3}$	203
54	C2 ^y 2	41	112	P4_2_	129	169	PŌ	174	227	Ē423	225
55	Č22	65	113	$\overline{P}4^{2}$	125	170	P6.	169	228	F4 23	226
56	Č22	66	114	PA 2	120	171	P6	171	220	Ē4 2 2	220
57		63	114		130	172	P6	172	227	EA 2 2	221
51	<u> </u>	05	115	140400	120	112	101	115	230	1 4.44	220

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). NRC Crystallographic Programs. NRC, Ottawa.
- BRADLEY, C. J. & CRACKNELL, A. P. (1972). *The Mathematical Theory of Symmetry in Solids*. Oxford: Clarendon Press.
- BRAGG, W. H., VON LAUE, M. & HERMANN, C. (1935). International Tables for the Determination of Crystal Structures, Vol. I. Berlin: Borntraeger.
- BURZLAFF, H., BÖHME, R. & JOMM, M. (1977). CRYSTAN: A Crystallographic Program System for Minicomputers. Univ. of Erlangen, Federal Republic of Germany.

- HENRY, N. F. M. & LONSDALE, K. (1972). International Tables for X-ray Crystallography, Vol. I. Birmingham: Kynoch Press.
- LARSON, A. (1969). Acta Cryst. A25, S1.
- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1971). MULTAN: A Program for the Solution of Crystal Structures. Univs. of York and Louvain.
- SCHÖNFLIES, A. (1891). Theory of Crystal Structure. Leipzig: Teubner.

SEITZ, F. (1936). Ann. Math. 37, 17-28.

STEWART, J. M. (1976). *The XRAY system of crystallographic programs*. Tech. Rep. TR 446. Computer Science Center, Univ. of Maryland.

Acta Cryst. (1981). A37, 525-529

Diffracted Intensities From Partially Ordered Layer Structures With Layer Shift: Two Dimensional

BY B. K. RAY, S. BHATTACHERJEE AND A. K. BHATTACHARYYA

Department of Physics, Indian Institute of Technology, Kharagpur-721302, India

(Received 30 August 1980; accepted 26 January 1981)

Abstract

A general expression for the diffracted intensities from an aggregate of partially disordered layer structures consisting of plane lattice layers displaced randomly along **a** and **b** by arbitrary fractions a/q_a and b/q_b has been worked out. The approach is similar to that of Wilson [X-ray Optics (1962). London: Methuen] and has been followed by Ray, De & Bhattacherjee [Clay Miner. (1980), 15, 393]. The expression is very general in nature and is suitable for studying the variation of intensities from such crystallites with any amount of displacements. Numerical computations for several cases have been carried out and results discussed. It is concluded that the peak will broaden and background increase as the magnitudes and probabilities of disorder increase.

Introduction

In a previous publication (Ray, De & Bhattacherjee, 1980) a general expression for the diffracted intensities from a partially disordered layer structure with a displacement has been worked out. The displacement, as is commonly found in minerals, consists of a one-dimensional shift of a layer parallel to the adjacent layers by an arbitrary fraction b/q along the b axis, where q is any integer. This expression is quite suitable for investigating the nature of the diffraction pattern from the layer structure when the displacement is gradually changed by any fraction of the axial length **b** in this direction. It would be more general and

0567-7394/81/040525-05\$01.00

interesting to study the effect on the diffraction pattern when the layer is displaced in two directions simultaneously by a/q_a and b/q_b along **a** and **b**, where q_a and q_h are both integers. As mentioned in the previous paper (Ray et al., 1980) such situations are closer to reality and are likely to occur in several minerals with a layer type structure, which are prone to this type of disorder because of their structural characteristics. Wilson (1962) has also made an attempt to study the diffraction from hexagonal cobalt with displacements a/3 and 2b/3. However, a more general expression of the diffracted intensity from a disordered structure of the above type is expected to be very useful in distinguishing between conglomerations of layer crystallites with different types of displacement and perhaps to estimate the magnitude of the displacements. The present work aims at fulfilling this objective.

Theory

The present derivation is based primarily on the model of disordered crystals with plane lattice layers as described in the previous work (Ray *et al.*, 1980). Here too the layers are taken to be parallel to the **ab** plane with **c** perpendicular to the layer. The disorder consists of shifts of the layer parallel to itself by a/q_a and b/q_b along **a** and **b** respectively, where q_a and q_b are integers. All symbols used carry the usual meaning as in the previous publication (Ray *et al.*, 1980).

Let the shift of a layer be a/q_a along the *a* axis and the probability of such shift be *a*. Corresponding quantities in the *b* direction for a layer are taken to be © 1981 International Union of Crystallography